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Defect-induced melting in nematic liquid crystals
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(Received 14 December 1999; in � nal form 3 April 2000; accepted 16 April 2000 )

In this paper we employ a relatively simple theory to show how a nematic disclination line
can act as a nucleation site for the growth of the isotropic phase. With this theory we are
able to � nd analytical expressions for the critical temperature of nucleation and the behaviour
of the core radius as a function of temperature. We are then able to compare these results
with a previous numerical model of this eŒect.

The structure of defects and defect cores in liquid
crystals has long been a subject of interest [1–4].
Previous interest arose due to the disruptive eŒect of
defects in liquid crystal display devices; recently, with
the development of the zenithal bistable display (ZBD)
[5] in which half-integral disclination lines play an
important rôle, there has been increased interest in
defects in displays. This paper is concerned with these
half-integral disclination lines, which occur in nematic
liquid crystals, and the eŒect they have on the isotropic
to nematic phase transition.

The phase transition between the isotropic liquid phase
and the anisotropic nematic liquid crystal phase is � rst
order. However, this phase transition is often said to be
weakly � rst order. The weakness comes from two features
in particular: the entropy change at the transition (small
as compared with kB per particle), and the existence
of almost critical orientational � uctuations close to the
transition. The dependence of the orientational order
parameter S on temperature T in thermotropic nematogens

Figure 1. Typical curve of order parameter against temper-is typically as shown in � gure 1.
ature, showing the temperatures TNI , T * and T +. FullIn the isotropic phase (S 5 0) the magnitude of
line: global stability branch; dot-dash line: metastable

� uctuations in the order parameter, and hence the branch; dashed line: unstable branch.
susceptibility to phase change increases dramatically as
the temperature approaches T * < T

NI
. A similar increase

The temperatures T * and T + represent spinodal pointsoccurs in the nematic phase (S Þ 0) at T + > T
NI

. Typically
of the isotropic and nematic phases, respectively. Inthe temperature diŒerence T + Õ TNI

~ 1 K% TNI , which
principle, supercooling of the isotropic state or super-is another indication of the weakness of the � rst order
heating of the nematic state can occur at temperaturesphase transition.
T * < T < T NI and T NI < T < T + , respectively. In the
case of nematic superheating, the isotropic state is the
minimum energy state and the nematic state is a meta-*Author for correspondence;

e-mail: nigel.mottram@strath.ac.uk stable, high energy state. However, beyond the spinodal
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1302 N. J. Mottram and T. J. Sluckin

Figure 2. Director (a) and order
parameter (b) con� gurations of
a disclination line of strength
1/2 [6]. In (b) the order para-
meter S reduces close to the
centre of the defect (r 5 0) whilst
there exists a small amount of
biaxiality a in this region. The
bulk order parameter Sb is
de� ned as the asymptotic value
of S as r � 2 and the core
radius R is de� ned as the radius
at which d2S/dr2 is a maximum.

point T 5 T + the metastable nematic phase becomes There also exists a second, unstable, branch R
u
(T ) in

this régime. The radii of the unstable and stable solutionsunstable with respect to orientational � uctuations and
the isotropic state is the only stable con� guration. Thus as a function of temperature for typical parameter values

are shown in � gure 3. This plot can be � tted to thethe nematic phase cannot be superheated above T + .
In practice, however, even this modest amount of parametric form
superheating is not observed.

Mottram and Hogan [6] have carried out a detailed T (R) 5 TNI 1
a

R
Õ

b

R2
(1)

investigation into the structure of the core of a line
disclination within a model closely related to the classic where a and b are constants that depend on the para-
Landau–de Gennes model. Related calculations have meters used in the calculation. From � gure 3 we see that
also been carried out by other authors [7–11]. The the unstable and stable branches of the curve annihilate
model describes the free energy of the disclination line, at Tc and for temperatures above Tc there is no solution
at a speci� c temperature, as the sum of the energy with a � nite value of R. Thus the only solution is an
resulting from the diŒerence between the local and in� nitely large defect or equivalently the stable isotropic
equilibrium order parameters and the energy of spatial phase.
distortions of both the order parameter and director. In
the presence of a defect, a change in the order parameter
is inevitable. In circumnavigating a strength 1/2 defect,
the director must rotate through p radians, and thus at
the centre of the defect there exists a singularity in the
director con� guration and a corresponding reduction
in order.

The director and order parameter solutions from [6]

are shown in � gure 2. The order parameter in the core
of the defect is reduced, and there is also some biaxiality,
a. The presence of biaxiality, which is associated with a
non-zero amount of ordering about a second molecular
axis, perpendicular to the director, was also found by
Schopohl and Sluckin [7]. The radius R(T ) of the core
region can be de� ned, uniquely if somewhat arbitrarily,
as the radius at which d2S/dr2 is a maximum. Using the
numerical package AUTO [12], it was possible to follow

Figure 3. The temperature dependence of the defect core
the solution structure carefully as temperature was radius. From the numerical results of [6]. The stable core
increased above TNI . It was found that stable solutions radius R and the unstable core radius Ru annihilate at

the critical temperature Tc .R(T ) exist up to, but not beyond, a temperature T
c < T + .
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1303Defect-induced melting in NL Cs

We now seek a simple thermodynamic model which Region B is associated with a surface free energy sNI
per unit area. Thus the free energy of this region isreplicates these results. We do this by regarding the

radius of the defect R as the relevant thermodynamic s
NI

L , where L 5 2pR is the length of the surface.
The free energy of the outer region is the sum of thevariable, and writing a free energy F as a function of R.

Minimization of the free energy will then lead to the entropic energy of the nematic phase and the distortional
energy of the director con� guration. The entropic energystable and unstable solutions, R and Ru .

Let us consider the director structure shown in may be written as fNA C , where A C 5 pD2 Õ p(R 1 dR/2)2
is the area of region C. The distortional free energy of� gure 2 (a) contained with a region of radius D, divided

into areas as shown in � gure 4. These areas, within the director con� guration is K ( = h)2/2 per unit volume,
where K is the Frank–Oseen elastic constant and thewhich we will approximate the behaviour of the liquid

crystal, are: an outer region C where the order parameter local director orientation h takes its asymptotic value
h 5 w/2, where w is the local circular polar coordinate.is exactly equal to the bulk equilibrium order parameter,

an inner region A where the order parameter is zero, The total free energy per unit length of the defect can
then be written asand an intermediate region B which contains the internal

boundary layer, centred at R, of � gure 2 (b). Thus region
F 5 p fI(R

Õ dR/2)2 1 2psNIR 1 p fN[D2 Õ (R 1 dR/2)2]
A is the isotropic core of the defect, C is the distorted
nematic liquid crystal and B is a surface between the

1
1

2
K P 2p

0
P D

R+dR/2
( = h)2 dr dw. (2)isotropic � uid inside the defect core, and the nematic

� uid outside. It will be assumed that the thickness of
We can simplify the quantities f

I
and f

N
close to T

NIthis surface region dR is much smaller than the radius
using a Landau expansion of each phase,of the defect R. It should be noted that the assumption

that S 5 0 within the defect core was made explicitly by
f
a
(T ) 5 f

a
(TNI )

Õ S
a
(T Õ TNI ) 1 O(T Õ TNI )2 (3)

Fan [8] whereas in [7], and more recently in [9, 10],
the inexactness of the isotropic defect hypothesis was where S

a
is the entropy per unit volume of the phase a.

emphasized. However, in this simple model of the free Letting a be in turn N and I and noting that by
energy we may assume an isotropic defect core. We will de� nition f

I
(T

NI
) 5 f

N
(T

NI
) we obtain from equation (3):

now consider the energy contributions (per unit length
fI

Õ fN 5 Õ (SI
Õ SN ) (T Õ TNI ) 1 higher order terms.of the disclination line) of each of these regions.

If the entropic free energy per unit volume of the (4)
isotropic phase is fI then the free energy of region A is

Combining equations (2) and (4), explicitly per-simply f
I
A

A
, where A

A 5 p(R Õ dR/2)2 is the area of
forming the integration in equation (2) and neglectingregion A.
higher order terms (in T Õ TNI and dR) we obtain (to
within an irrelevant constant) :

F (R) 5 Õ pDS(T Õ TNI )R2 1 2psNIR
Õ

pK

4
ln R (5)

where DS 5 S
I
Õ S

N
.

Let us examine the signi� cance of the terms in this
equation. For T < TNI the � rst two terms imply that the
presence of a region of isotropic � uid or a nematic–
isotropic interface leads to an increase in the free energy
of the system. Thus these terms favour a small defect. It
is only the third term that favours a large defect since,
for a small defect, the tightly splayed nematic region
close to the nematic–isotropic interface leads to a large
free energy contribution. By contrast, for T > TNI the
entropic term in equation (5) is now negative and, like
the director distortion term, favours a large defect. Only
the surface term prevents unrestricted growth of the
defect core.

Figure 4. The simpli� ed picture of a disclination line:
Typical free energy curves are shown in � gure 5. Forregion A, the inner, isotropic, core of the defect; region B,

T < TNI the balance of energy terms produces a minimumthe nematic–isotropic interfacial region; region C, the
distorted nematic region. energy con� guration at a � nite defect radius R(T ). For
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1304 Defect-induced melting in NL Cs

From equation (7) the critical temperature Tc is found
to be

T
c 5 T

NI 1
2s2NI
DSK

(8)

and the maximum core radius of the stable solution is

Rmax 5
K

4sNI
(9)

which is twice the core radius at the transition
temperature TNI .

This defect-induced transition is a form of hetero-
geneous nucleation. During such a nucleation process,
the need for thermal � uctuation to serve as a seed for
the new phase can be avoided if there are su� ciently
large impurities present. For su� ciently large super-
heating or supercooling, the impurity will be larger than
a critical radius Rc (T ), and at that point the new phase

Figure 5. Schematic behaviour of free energy F at various grows from the surface of the impurity. The macro-
temperatures. For T < TNI there exists only one energy scopically small, but microscopically large � nite size of
minimum; for TNI < T < Tc there exists a minimum and

the impurity provides a surface free energy term whicha maximum; the minimum and maximum coalesce at
increases with impurity size. It is this energy which mustT 5 Tc ; for T > Tc no energy minimum exists.
be overcome for nucleation to occur.

In our case the nucleation site is not an impurity
but a defect, but broadly speaking the physics of thea small amount of superheating, T > T

NI
, T ~ T

NI
the

nucleation remains the same. In an analogous fashion,asymptotic behaviour of the free energy has changed
grain boundaries and dislocations in solids can alsosince F(R) � Õ 2 as R � 2 . The free energy F(R) now
serve as nucleation sites for liquid nucleation. Thushas a minimum at R(T ) and a maximum at Ru(T ). For
heterogeneous nucleation can always occur from a purea large amount of superheating, the energetic advantage
phase which sustains topological defects.of the isotropic core is so great that it now overwhelms

the surface energy-induced maximum. The minimum
We are grateful to S. J. Hogan for useful discussionand the maximum annihilate at a critical temperature

during this project.Tc , at which there is only a point of in� ection. For
T > Tc the isotropic defect core grows catastrophically

Referencesto invade the whole region.
[1] De Gennes, P. G., and Prost, J., 1993, T he Physics ofThe maximum and minimum solutions can be found

L iquid Crystals, 2nd Edn (Oxford: OUP).analytically by minimizing F(R) in equation (4). The
[2] Chandrasekhar, S., 1992, L iquid Crystals, 2nd Edngoverning equation for R is

(Cambridge: CUP).
[3] Collings, P. J., 1990, L iquid Crystals: Nature’s Delicate

Phase of Matter (Bristol: Adam Hilger).
qF

qR
5 0 (6 )

[4] KleÁ man, M., 1983, Points, L ines and Walls (New York:
Wiley).

which gives [5] Bryan-Brown, G. P., Brown, C. V., and Jones, J. C.,
1995, Patent GB 95 521 106.6.

[6] Mottram, N. J., and Hogan, S. J., 1997, Phil. T rans.T (R) 5 TNI 1
sNI

DSR
Õ

K
8DSR2

(7 )
Soc. A, 355, 2045.

[7] Schopohl, N., and Sluckin, T. J., 1987, Phys. Rev.
which is of identical form to that of equation (1), from

L ett., 59, 2582.
the numerical calculations by Mottram and Hogan [6]. [8] Fan, C. P., 1971, Phys. L ett. A, 34, 335.
In equation (7) we have assumed that the material [9] Gartland, E. C., Palffy-Muhoray, P., and

Varga, R. S., 1991, Mol. Cryst. liq. Cryst., 199, 429.parameters are independent of temperature. This is
[10] Sigillo, I., Greco, F., and Marrucci, G., 1998, L iq.equivalent to saying that the � rst order jump in order

Cryst., 24, 419.
parameter in � gure 1 is the dominant eŒect and the [11] Meiboom, S., Sammon, M., and Brinkman, W. F., 1983,
change in S along the upper branch of the curve in Phys. Rev. A, 27, 438.
� gure 1 is negligible. [12] Doedel, E. J., 1981, Congr. Numer., 30, 265.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


